{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Training a Pytorch Lighning model\n", "\n", "In this notebook, we show the training of a simple CNN model using Pytorch Lightning. \n", "We first start with data, then define the model, and finally train it for a HAR task." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Creating KuHar LightningDataModule\n", "\n", "In order to train a model, we must first create a `LightningDataModule`, that will define the data loaders for training, validation and test.\n", "Here, we will use the Standartized KuHar data. Therefore, the data directory may looks like this:\n", "\n", "```\n", "KuHar/\n", " test.csv\n", " train.csv\n", " validation.csv\n", "```\n", "\n", "The `train.csv` file may look like this:\n", "\n", "| accel-x-0 | accel-x-1 | accel-y-0 | accel-y-1 | ... | standard activity code |\n", "|-----------|-----------|-----------|-----------|------|------------------------|\n", "| 0.502123 | 0.02123 | 0.502123 | 0.502123 | ... | 0 |\n", "| 0.6820123 | 0.02123 | 0.502123 | 0.502123 | ... | 0 |\n", "| 0.498217 | 0.00001 | 1.414141 | 3.141592 | ... | 1 |\n", "\n", "As each CSV file contains windowed time signals of two 3-axial sensors, we may use the `MultiModalSeriesCSVDataset` class to handle this data structure.\n", "After it, we must create a `LightningDataModule`, that will define the data loaders for training, validation and test. \n", "The implementation of `LightningDataModule` may look like the snippet below:\n", "\n", "```python\n", "import lightning as L\n", "from torch.utils.data import DataLoader\n", "from ssl_tools.data.datasets import MultiModalSeriesCSVDataset\n", "\n", "class HARDataModule(L.LightningDataModule):\n", " def __init__(self, data_path: Path, batch_size: int):\n", " super().__init__()\n", " self.data_path = data_path\n", " self.batch_size = batch_size\n", " \n", " def train_dataloader(self):\n", " dataset = MultiModalSeriesCSVDataset(self.data_path / 'train.csv')\n", " return DataLoader(dataset, batch_size=self.batch_size, shuffle=True)\n", " \n", " ...\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faciliting the creation of the LightningDataModule with MultiModalHARSeriesDataModule\n", "\n", "If your directory is organized like the one above, the CSVs are a collection of time-windows of signals, and the `LightningDataModule` implementation may looks like the one above, you can use the `MultiModalHARSeriesDataModule` to create a `LightningDataModule` easily for you.\n", "The `train_dataloader` method will use `train.csv`, `val_dataloader` will use `validation.csv` and `test_dataloader` will use `test.csv` to create the `MultiModalSeriesCSVDataset` and encapsulate into `DataLoader`.\n", "\n", "To create a `MultiModalHARSeriesDataModule`, we must pass:\n", "\n", "- `data_path`: the path to the directory containing the CSV files (`train.csv`, `validation.csv` and `test.csv`). We use `standardized_balanced/KuHar` in this case;\n", "- `feature_prefixes`: the prefixes of the features in the CSV files. In this case, we have `accel-x`, `accel-y`, `accel-z`, `gyro-x`, `gyro-y` and `gyro-z`;\n", "- `batch_size`: the batch size for the data loaders; and\n", "- `num_workers`: the number of workers for the data loaders. Essentially, the number of parallel processes to load the data.\n", "\n", "All data loader will share the passed parameters, such as `batch_size`, `num_workers`, and `feature_prefixes`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "MultiModalHARSeriesDataModule(data_path=/workspaces/hiaac-m4/ssl_tools/data/standartized_balanced/KuHar, batch_size=64)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from ssl_tools.data.data_modules.har import MultiModalHARSeriesDataModule\n", "\n", "data_path = \"/workspaces/hiaac-m4/ssl_tools/data/standartized_balanced/KuHar/\"\n", "\n", "data_module = MultiModalHARSeriesDataModule(\n", " data_path=data_path,\n", " feature_prefixes=(\"accel-x\", \"accel-y\", \"accel-z\", \"gyro-x\", \"gyro-y\", \"gyro-z\"),\n", " label=\"standard activity code\",\n", " features_as_channels=True,\n", " batch_size=64,\n", ")\n", "data_module" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can test the dataloaders by getting the first batch of each one. Let's do it (only for`train_dataloader`)!. \n", "\n", "> **NOTE**: We use the data_module.train_dataloader() method to get the data loader for the training set. Note that the `.setup()` method must be called before getting the data loaders. If you don't call it, the data loaders will not be created. However, when used to train a model, the Pytorch Lightning `Trainer.fit()` method will automatically call the `.setup()` method for you. So, we put it here just to show how to fetch a data from `train_dataloader` and check if it is working." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Inputs shape: torch.Size([64, 6, 60]), Targets shape: torch.Size([64])\n" ] } ], "source": [ "data_module.setup(\"fit\") # We just put it here to test.\n", " # When training a model, the Trainer will \n", " # call this method.\n", "\n", "train_dataloader = data_module.train_dataloader()\n", "\n", "# Pick the first batch to inspect. As batch size is 64, we will have 64 samples.\n", "# Note that dataloader only implement iterator protocol, \n", "# so we can use next() to fetch one batch.\n", "batch = next(iter(train_dataloader))\n", "# Each batch is a 2-element tuple:\n", "# First element is a Tensor with 64 input samples\n", "# and the second is a Tensor with 64 labels.\n", "inputs, targets = batch\n", "\n", "# (B, C, T) = (Batch size, Channels, Time steps) = (64, 6, 60)\n", "print(f\"Inputs shape: {inputs.shape}, Targets shape: {targets.shape}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training a simple model\n", "\n", "We will create a simple 1D CNN Pytorch Lightning model using the `Simple1DConvNetwork`. The model will be trained to classify the activities in KuHar dataset. \n", "\n", "Pytorch Lightning models must implement the `forward` method, `training_step` and `configure_optimizers` methods. \n", "Also, the `__init__` method is used to define the model.\n", "The `forward` method is the same as the Pytorch `forward` method. \n", "The `training_step` method is the method that will be called for each batch of data during the training. It should return the loss of the batch.\n", "The `configure_optimizers` method is the method that will define the optimizer to be used during the training.\n", "\n", "The `Simple1DConvNetwork` is a simple 1D CNN model, that has 3 convolutional layers and 2 fully connected layers. \n", "It is trained using the `Adam` optimizer and the `CrossEntropyLoss` loss function.\n", "\n", "Besides that, Lightning models implemented in this framework, usually logs the training and validation losses." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Simple1DConvNetwork(\n", " (loss_func): CrossEntropyLoss()\n", " (features): Sequential(\n", " (0): Conv1d(6, 64, kernel_size=(5,), stride=(1,))\n", " (1): ReLU()\n", " (2): Dropout(p=0.5, inplace=False)\n", " (3): Conv1d(64, 64, kernel_size=(5,), stride=(1,))\n", " (4): ReLU()\n", " (5): Dropout(p=0.5, inplace=False)\n", " (6): Conv1d(64, 64, kernel_size=(5,), stride=(1,))\n", " (7): ReLU()\n", " )\n", " (classifier): Sequential(\n", " (0): Dropout(p=0.5, inplace=False)\n", " (1): Linear(in_features=3072, out_features=128, bias=True)\n", " (2): ReLU()\n", " (3): Dropout(p=0.5, inplace=False)\n", " (4): Linear(in_features=128, out_features=6, bias=True)\n", " )\n", ")" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from ssl_tools.models.nets.convnet import Simple1DConvNetwork\n", "\n", "model = Simple1DConvNetwork(\n", " input_shape=(6,60), # (The number of input channels, input size of FC layers)\n", " num_classes=6, # The number of output classes\n", " learning_rate=1e-3, # The learning rate of the Adam optimizer\n", ")\n", "\n", "model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To train a Lightning model using Pytorch Lightning, we must create a `Trainer` and call the `fit` method. The `Trainer` is responsible for training the model. \n", "It has several parameters, such as the number of epochs, the number of GPUs/CPUs to use, *etc*. \n", "\n", "We will train our model using the already defined dataloader. \n", "The `fit` method will be responsible for training the model using the training and validation data loaders. \n", "After training, we will test the model using the test data loader and Trainer's `test` method.\n", "\n", "Here, the training will run for 300 epochs (`max_epochs`) and will use only 1 (`devices`) GPU (`accelerator`)." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "GPU available: True (cuda), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n", "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n", "\n", " | Name | Type | Params\n", "------------------------------------------------\n", "0 | loss_func | CrossEntropyLoss | 0 \n", "1 | features | Sequential | 43.1 K\n", "2 | classifier | Sequential | 394 K \n", "------------------------------------------------\n", "437 K Trainable params\n", "0 Non-trainable params\n", "437 K Total params\n", "1.749 Total estimated model params size (MB)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "59a3f2507e874233b3fcea3038ad1e81", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Sanity Checking: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/lightning/pytorch/loops/fit_loop.py:293: The number of training batches (22) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b6253b3975b7415d9a5706d70a1ccc49", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Training: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "070c47396cad4c5da75d15a38fb5adfe", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4faa2397296441e1898ff1685f1bf270", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "10e56f9677c84d188c425bbcb0806ff7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "39dee8f731944a08aa6b6b580d02a5d4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d7020d394e6d4c7097b4b557f13dc060", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "96d30b43563c42afacbaa478d7b57f39", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "22489dabd4ac414597c2e5684f91780b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fc559422aa1d40b28e8abf82c1a8ad3b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "769b429532c64f82ae47e9d1fb47e2c6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9fce50c398ee41c2a48b49fdc3669645", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2917db16210040cda62f859c5344db6c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d4296945a50b4c56af89d885ef1cf131", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3bc55440bbf24b33b2b2dac21cce5911", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "36359bf3a18143dba86c32d38373ace3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0ffae45ea82c4f64bed8f8bd6607603e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "87efee71c7be4566aceee552dc7b4dc0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7264c61b755d459085843223c3a15fad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d8159cc157db4998b320dd14a7a9ed96", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fde027344dc147e68639e39b17def7a8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "723f84fa90e24861a6fe9c2137395528", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "62856356714049f8979f204cff5bbfff", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5092834d429f454ab0a2d82aeeaa699e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "45b4a71a88b248bcb587f8446a3a4807", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6f1945e65d524f18879014934ad649c2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fe117e9908dd44bc8349175ee3ba18f7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2dd9c509f96b46deb287f3092892684c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "95bf978c98804a738164acfa40b2decb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "81ec205913b94de5aa18aa9c91617855", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2b690964e3f14f73ba504ec89165aa07", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8927cadebe4f496aa00dee32498376a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7f691e0323a64bcb9430a1151f472c2c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2d2959d7ad4246da83ba135531e616c3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7da106b049284a0fad8e0cf400bfd3e3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e2bb1a6456704786b8ecea546f6cd776", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "236791bc631e40d5946ab33d49b604ca", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7d53e380a2bb4b56a22bea424a9d1336", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a91cbe03cbc142aba8819f5f423dc45a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b3024bec829444dcb3fef8612e2879c2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ea6a4058240441e68276a77a1d864aad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "32fec86d7c3f4af98bb470849b983e3d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "748b4a04778e49c3a4da1df4059bde32", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c7d440c81ae64fadb904debf2b77dc7b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ca3b814f7b6f4582b65202a0e9f07230", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2ff7eee770984cdf975045900f951f58", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b915d6fd40f546eeaccbf344f4a843dc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cbdb30ae75c14d5eb6e616e040c34d29", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fc0183ef67ae4891b3c5461fa3ee6216", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "815aaaf8423f4ede84ca4da6f381593a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "782d876913134a019fe64a662fbc417d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "52bb849641fc4d819e8727148a0881f0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c7650e4fdb4246e7b176106a741ae50b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e04ed0f9be4d4395ab5a993eaa32870d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9a5e5eda70a746e3bcbbe05bbeee2a24", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d400e18f9ae144cd8775a3bfa1fb0e3a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6cd53eb1047445e4a32233cfc0c91d42", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "888041e02cf64143bd06dfca58e7f694", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7649e4936bec466abaf23a7f7494ddaf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "db1ced4f36624f4cba30d0d94c2cba77", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1df661a205554d8b8e5bd4b36cd4c1b6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d2b4a5ffdf2c4535a1d5c5878385c780", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "44e83334188d4f92bb9b7bf1aff191a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "259110f035a24308b75ab02198e3270f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "adc2bb43d7e04eeaa3d1176c0a23c1fb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "029f3a3211764afa8f700e5b3f70027b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2aada04411d143ca9f4acd5d2c36e6fa", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d398eebe4bae4f51bf0f8dc4fe2ff0f4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "30036e3eb02f483fa8d3bf57d9ea3892", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "96f5f8932a6f4d77840fa6c72c42ecef", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e85f9a2322f549698ce08558fed4e63a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6a5e89104bef454393f72a8458f5bcd4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "849ad159804746e39adf71df19f268a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "48423492df8d40fa8c3814fba8169ecf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9d631cb2d3d84357aba358db71fc335f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1c0fb7edfb1a4686a410f7fbe5907559", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ef44367824fc4e918ef894f73777494c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "46b4552200334149a5df06c65b95a2f3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6d6b92ed659041a88ae700ee8f7768a7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4f75991b9f9f42f3a571479e90ebf893", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "86b57fe708314bdba76232dfceecea4f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7cd325a232b544b094fe780d54dae012", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7ebccee8eff346c6bb229359552c4085", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d4d4d8beff6447d8b30e9227de0a0e4c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "164b5cf02dce4f3288fafc9422f23ca8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a59729f142c14bbfbeb42e8dd2a845b3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8b6d9ab0444d4e77871c21fea89b432b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9b9dede6f16a446eb68f5a3dde5dfdcd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a96558b651524df6b8aac95391ff1df7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4e67c95fc9d0434b823003aff8340899", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f0d554f0ef0a461aaf2521210dc54112", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ad9fa32ab6b54b9ab078c390bc6f909a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a6855985183641a0b53da86086ea8b81", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "29f1a9e4664d4db691206a8139ddecb4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c0da02a63ba945359f1c4f5aeeb7ba91", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "745be716682245e8b5e551f32c7af3e3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5f24dbc1767d42fea333e6e3017ba473", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7048e2a1e4774b4c8d3b3e6a43da684e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aab6c50f1e12490a873b3ccb5bbe1a7f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bfbd8b450def4fe4a511e148b6b381f2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "56709e79411c446ca3320e4fa1ba1eef", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ab2b1e9f0de349928fd3748e2655c866", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "89d53d248fc34369bdbfe8ecbda0a721", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "174ad6b7980841dcb51ec64f0d53716d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2a369afb420e4554b807461c9aef4e17", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ff59c4a45e0e43c183755fc5e2d79571", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "98821b05257f4c68bab988e50b50f690", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2ed9eff9f7ee4eeca4af327bc8ddd4cd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "88ac5c5d00584ef3b0a393f6000a85b6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7cb5b3c8b0154bffaeb4ae930ced2219", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1a5510d6ce2c43ecac60c625deecc721", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5414e8b698f14d9fb4c65475bdd8f1ee", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "927e76e244304a07a36effb8f280122e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d176f573041648d2bec6f05fa47fe0fb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f0b1c69da7ec4eb49450e55810088e81", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d9d7d8c910ec439f95874d10ae674357", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "282c39358deb43b287587d73352fe04b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "63058ffd15494ac3813301ebfdb3d65b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "91b40d71110c4dea8d079f1f5e300ad6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "94fcf34545f74848ad82bc6098b0346c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "353a014ca9d64454b9a72f5221c71d56", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5aad4cbd8441417e914b0d346702f6bd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5939889c2f87424494bb339093bef7ac", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5b31f4ca917e4f3fbb53b1f9e12e66fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3c9a9c00508140f6bf67472f98fed0a7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e669cd05d7e1436f88f8e9f3432dbe13", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5035961175704059b6b2cff7ae551dbf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b7af50c153804148927495b1a1691a9f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "833b4d1e29dc4b84a16992e4a24302d9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "33a2f99c7bf747e59eccddf1bda4f38e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6bc2de26662c42e4b563ce96431ab075", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "868a05d54431412ebd281458315ba0eb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "afbca4a4e2924e288a831bb6517a1d2c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2c952652963947ad972cbe04401ea407", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fea43c0fc0474d6a83779c6ff86f166e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bf7f3003b8a34aed92c13685e4473b57", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c9f9195e58dd4026891f2b45645a6890", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dc45003301ee456d890c37cedfb82b8a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "022a7f66c8ca476fb5553eebdd07ce29", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "162c1d7726b5457592a938e208c2a6fc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "73c65c6c2db24894ae74bf39833aba33", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5857a13e6a924dfd98faf8e5fd1299fe", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5658fc0490a34781a9d8c01f7fea22e9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "42f8b70051224d018740cd7b989263c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "234b33203ee54f49a14381bd0edc79a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1b475504745d42c0be40521c656e6217", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eb3f8e8bd47743eb861fe7ed0c080f99", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4d79533ba1f74b9687bea8b25dd812b8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "612048045f82436a9505dc2c8443250b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5de54614675d49c4bc47b9c64eab210c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ca8f394a90e746f986917488e9031400", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f716ade372e84d01ad8faa5bc04523d6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "088c008e4f944549adb96d122f5d0bb3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5b7eab8e347b4464a72882bd5eebaba2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9f6952f17aed4dd2982b9c3b48140327", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9acd4bf155c345e3b444f0f936a8785a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2995eb5ecf6842028a16bed6896391e0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "320fee3f737b4a1bb91b188fc1893584", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "91089a3568f94eaa8ee163a572fcd4ed", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2956b7664162451d88247d89d240a598", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cc6c98aae5ad4fe0b445ca54dbc6b8de", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "257af8436b7c4151b74307be712227cb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d4ff30c82da54cf1807239bfc446fa70", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dddc2c38fcec453386f967243196c459", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "76ff6401289a4e8688ee1789f8f2470d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bae3c633126347469e95d90d0093a104", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "09af0f2247504ce5bc64a365e2cbe832", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5b47458cc02e4bbba1467f36950aece2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c08be4e6050847918520147b90c3fe7a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b36abac8d4a74e49be7c909a4e1ec3a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8b40ebec0ae3427a958ae5c301366adb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "73a5995503e24b4e93256aa35ceb4d01", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f25251f292d0478b946248c3df19d60c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "06fff7a7161f489088610f5724876cb5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "88335b7a370940e0a2184f4bab078a1a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3a4cb007716244668fc26d8455d84cd7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a53bdc8ebe2446b7bfaca037268223cc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7d1c5b47061e4e57a101a2c53bf91b3b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9ae7e7826e6f4c9ab91f93abe61c1c22", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bf342f9958c04f2a80b1f3352a4b6aa5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3006243802624579af054ecc549f18ae", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1e2f68e106de477b9a11b68e2ba58d25", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6c141fce630749b7bd82faf23c1682f1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b354920891144adf886db63c46500ff5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "961e06d7dc774601b279795e5435288f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a920cf6356fb4ca18b95507f64e5ab0f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "569f33a2a74a42ab9ce9baf35818475c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7ef5446b72e44589899191a92b92debf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "50ea569176304c7e89983539636995bf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4fec4563b29545f785f6aecbc92ddc1b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ae02aa66acd7441b8210d937ca450978", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5eaf0bcbfe294d19bfab2d849560be4d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2de62cd198584ea181f589f812b097af", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e8b16ae03c014547b87cba9a524f24af", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ad54bf25ba2c43af981698f7ee4f881d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "83c0636edfb64aba9e26e36b91a5b7c2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bff49f3387f245c9bc9ac20c9236b843", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e0e9fe1112434bb2b6913012aecba4d8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "59f7b23c8f80423584061f7b2c9f1a43", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "993d73ca9d22442a85919c05e38196ad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3e5b0f7309c34d09a988c9eb417136a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eed0a5fd30194f3fbad69eef8199e39a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e52ebd654b8440d788c8f26eda0b8fac", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "66b787e4c13e45c2801124f5fc69231d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "350d6becad2e46bdaa2249cd6ea3697c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5d97819536c7472bbb021009c0339251", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c953c657ced94adebf638df81d08996c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "18c9620751154d5dbd095e5f1b678244", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b38c0905707043e8ac8417dcd368e6fb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "745cbfc77e384979ad88a657921e3736", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "903e5746e2ce4933a8497e4ea493beb5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d3142f67adb248f0bab088d096b5e645", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cce51202a42345dfb00ff63abbcad3a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b2fe8c5cc3d840618b3b1bdf7addfa5e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "22beac347ac7459a8760cf250028b5da", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a3d9d5fc37fd44e9b54588ce20c6d87b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "df429a5d7a4d4e33a122cf08f7d1f287", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9d4888f942214e338bbb42d6d801cebb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e16b49ef8b2247248a31dcaca942fda2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e21fd4aad00d4a5491e739f412214324", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "793c7a121ba14b6db583e94fe1c9dc99", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c52934a1fb724678991bd8d562b64c85", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3ac013eaa79a4c1da75b4e104ac015d1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5aa160a2305e415f83881b24fce6323c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0cdf8fdbd4d146a0aa7b401728925515", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "04666c8294164678b8a98a54247a65d3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "50863fb47f754a359ea43d6177e6e252", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8dd2f2e068a046d09b6d3fe13fcbf5a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7cdb559d4f494badb6f2c6994a43ad9b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "65036a56b0a74c7cb93c82b6f7a460d5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9a825dcf8d03450a9417d0977d287785", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9dfeeaf14b504f4e84dc77deba1c1714", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "35e3b49dab744a1dba11fe3e0b08eeb9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c22e319ff66c460ea763746c8a3b1f80", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2f77fbfa43e54f8281b207d6e799b41a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a83bfbbfb5e7434691b1620f09f257a8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d26122f4b0a5451592deb5b9170828a6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0fc5401957a545829d7b120188c96af4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c818fc4382934add972f0005e24f8f86", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "64c21abe7cae458481e387f5a9ff9a6a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b1e003565e7e48f8827f163b3d7cb4fb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1ec75c00835d40699caa90551db61161", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0a0dce283d5c4af594a481961ca9ea5c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d23fe0b929484204ad0abf625a5af3fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4a98a527ff124a4b9eac413f5b5ea971", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "982475ae69634bd0a0f99f8638d59d33", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "288c86b045414697a0b8a1c9ca5bd0f9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "74efb11618524e16b6c9b78bebb6c545", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9489df4f93ae405c8d685c2af917f54b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4956413a97fe41ed9599b4b65330a7de", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "79163c930ec64076b05820bad1d20cfb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "05b55c9fccd94178b434adb46a514b61", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3cee0674762f41e3816022f2bc39af8a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "69f0a80ef5684b1fa8fa3f443f0561be", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c30a586fe7d6409fa528877246b79103", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9ffa8092cb744b0bb0b5f8553baa8ec3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0b9ed2498fb049e7bb1ee8ee0fb72db1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b9b5c54f845847dcad3cb05bafba1662", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "24d54c3f54cb4b8d8219adfd453d70b6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "37b64ffab8fe42589f048cfcb3c51f47", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "91662ac510a24218a2599359a424d7b9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5245852479804dc7bb09128a871c18b8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "48a51124ff834112834a6b57289a5c9b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5261d0439a8643ebae51cb340bd0a155", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "467b69c573594504bcc5189b804f5b07", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "17a97c72d89a4d3b8f9bcdb5d11f3b30", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1a023daeaaa04ccb91c5e8730ffd7b52", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a9b804bbcd1e4c6a91e098dcace86d55", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7062c68049ae4b05a24583aaf78183df", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d2e35356072d447d9938c73ab7e160be", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f6ac33768b44451d812d14d8aed6b5f2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dbd6b42321884950925543fba4401071", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "70a74e3ef7cf4726929b02526e79e3b8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d8bce55d343b46c886093e082c8ccd0b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "614d564b4e96495b8f2bf6fcde5fa4fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4faf17ac9f4647ab9cd5c8ef561aa2eb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c1894f736e2c4c84bd3aab4598ce1893", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d4a2b72a40ce4fa8b789779f964f002a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a27d8ae208b842b8b718e49c02cdec31", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "75fa22e255b94df79c181b38b25c7884", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c981031eed2d401587e595fddcbaca8b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eb5ce261ae804916a9f747da1661308c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0730ce74649e4d72b11e73a99d1abffd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2716addee666459baf4a4b5678ef643e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "db3b71cd5d8b4de999ffbdac8662e278", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "19cf8f29a202456fac448c08acd06600", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d2650ec4ccfa462eb1c81db03a887595", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c6a8078121e24272bf7aa18c30eafcef", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f3ed126a5de44283baa2457ea2552d0d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8f93b21dc74b4891834af32e88a3d245", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "98a8c84b5d2144fba7be57905fe231ad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7b64741dca284e64a893e25b3737488d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eada016448e144df84b9e6839de74135", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0330c7de0352407c9d1aa7c4005bc33a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ef8eeaf9836d45b39337655d5b58a1ee", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "12749fa9e07a44a6901650347afb7422", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "98bfe5aa96bb47918dd8728b0f46eb6b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "85b53528cd4447bc95d620a71335b580", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d48986cc0ee54b1b98c8407c5050a7bb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d261b007a57c40de9ecb1216bd997f91", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0152da5f0e694d09b4b19c488e5c0aa2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "afff62d10cbf404493085fb664a2a610", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Validation: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "`Trainer.fit` stopped: `max_epochs=300` reached.\n" ] } ], "source": [ "import lightning as L\n", "\n", "trainer = L.Trainer(\n", " max_epochs=300,\n", " accelerator=\"gpu\",\n", " devices=1,\n", " strategy=\"auto\",\n", " num_nodes=1\n", ")\n", "trainer.fit(model, data_module)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing the model\n", "\n", "### Using the test set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once the model is trained, we can test the model using the test data loader using the `test` method and passing the data module.\n", "The `test` method will setup and use the `test_dataloader` in from the data module to test the model and print the test loss.\n", "\n", "Note that the return of the `test` method is a list of dictionaries containing the test loss and the test accuracy for each dataloader (just 1, in our case)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "01c6dd4249f34c43b4a7cf2d46edcaf3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Testing: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃ Test metric ┃ DataLoader 0 ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", "│ test_acc │ 0.8333333134651184 │\n", "│ test_loss │ 1.9901254177093506 │\n", "└───────────────────────────┴───────────────────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", "│\u001b[36m \u001b[0m\u001b[36m test_acc \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.8333333134651184 \u001b[0m\u001b[35m \u001b[0m│\n", "│\u001b[36m \u001b[0m\u001b[36m test_loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 1.9901254177093506 \u001b[0m\u001b[35m \u001b[0m│\n", "└───────────────────────────┴───────────────────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[{'test_loss': 1.9901254177093506, 'test_acc': 0.8333333134651184}]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trainer.test(model, data_module)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Using any other set from data module" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And if we want to test the model using the validation data loader, we also can use the `trainer.test` method, but passing the `val_dataloader`. \n", "Remember that as we are not passing a `LightningDataModule` to the `test` method, but a `DataLoader`, we must call `setup` method." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bd31957d8c5a40bfa0624948e306396e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Testing: | | 0/? [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃ Test metric ┃ DataLoader 0 ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", "│ test_acc │ 0.5962441563606262 │\n", "│ test_loss │ 14.916933059692383 │\n", "└───────────────────────────┴───────────────────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", "│\u001b[36m \u001b[0m\u001b[36m test_acc \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.5962441563606262 \u001b[0m\u001b[35m \u001b[0m│\n", "│\u001b[36m \u001b[0m\u001b[36m test_loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 14.916933059692383 \u001b[0m\u001b[35m \u001b[0m│\n", "└───────────────────────────┴───────────────────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[{'test_loss': 14.916933059692383, 'test_acc': 0.5962441563606262}]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_module.setup(\"fit\")\n", "validation_dataloader = data_module.val_dataloader()\n", "trainer.test(model, validation_dataloader)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 2 }